π Parabola Dibawah Ini Yang Tidak Menyinggung Sumbu X Adalah
Untuktahu bagaimana bentuk grafik dari suatu fungsi kuadrat, sobat harus memperhatikan beberapa sifat penting dari fungsi kuadrat di bawah ini. 1. Hubungan dengan sumbu y (jika x=0) Jika dari persamaan y = ax 2 + bx + c kita masukkan x = 0 maka akan ketemu y = c. Jadi titik potong parabola dengan sumbu y adalah titik dengan koordinat (0,c). 2.
Adabanyak pertanyaan tentang persamaan lingkaran yang menyinggung sumbu x beserta jawabannya di sini atau Kamu bisa mencari soal/pertanyaan lain yang berkaitan dengan persamaan lingkaran yang menyinggung sumbu x menggunakan kolom pencarian di bawah ini.
3 Jika a > 0 dan D < 0, maka parabola akan terbuka ke atas dan tidak memotong maupun menyinggung sumbu X. 4. Jika a < 0 dan D = 0, maka parabola akan terbuka ke bawah dan memotong sumbu X di dua titik yang berlainan. 5. Jika a < 0 dan D = 0, maka parabola akan terbuka ke bawah dan menyinggung sumbu X di dua titik yang berhimpit. 6.
d Fungsi kuadrat yang grafiknya menyinggung sumbu-X. Perhatikan kembali bahasan tentang "Titik potong grafik dengan sumbu-X". Grafik akan menyinggung sumbu-X jika dan hanya jika b 2 - 4ac = 0, maka koordinat titik tertinggi atau terendah adalah (,0). Sehingga . Jadi, fungsi kuadrat yang grafiknya menyinggung sumbu-X adalah .
Sehinggapersamaan dari parabola tersebut adalah (x - 4)Β² = -12(y - 4), dengan direktriks y = 7. Grafik dari parabola tersebut dapat digambarkan sebagai berikut. Perhatikan bahwa grafik parabola di atas memiliki sumbu simetri di garis x = 4. Semoga bermanfaat, yos3prens.
Parabolamenyinggung sumbu x di satu titik ( x 1, 0 ) dan melalui satu titik sembarang. Himpunan kosong adalah himpunan yang tidak memiliki satupun elemen atau himpunan dengan kardinalitas = 0 (nol) atau {}. jawaban dapat disimpulkan seperti di bawah ini : a] Yang tidak mengakses ketiga media -> 225 orang. cara : 1100 - (150 + 335
ellipske salah satu garis arahnya adalah 20. Tentukan jarak dari titik M ke titik api yang bersesuaian dengan garis arah tersebut. 8. Suatu ellips menyinggung sumbu-x di titik A(3 , 0) dan menyinggung sumbu-y di di B(0 , -4). Sumbu-sumbu simetrinya sejajar sumbu-sumbu koordinat. Tentukan persamaan ellips tersebut. 9.
Teksvideo. Di sini diminta menentukan fungsi kuadrat yang grafiknya tidak memotong ataupun menyinggung sumbu x. Jadi kalau kita memiliki fungsi kuadrat FX = AX kuadrat + BX + C maka untuk mengetahui bahwa grafiknya tidak memotong sumbu x buat yang kita tentukan dari diskriminannya di mana pimpinan ini kita rumuskan b kuadrat minus 4 Aceh dan dia tidak memotong sumbu x dan sumbu y.
JikaD = 0 maka grafik akan memotong sumbu x pada satu titik (menyinggung sumbu x). Jika D < 0 maka grafik tidak memotong sumbu x. Lebih jelasnya perhatikan gambar di atas! Contoh 1. Tentukan apakah grafik y = x 2 - 2x diperoleh titik potong dengan sumbu x adalah (4, 0) dan (-2, 0).
Menentukanfungsi kuadrat yang grafiknya mmotong sumbu x di titik (p,0) dan (q,0) persamaan garis y= x+1 dan y= -2x-5.Persamaan garis yang melalui titik potong kedua garis tersebut dan sejajar garis 2y-x-4=0 adalah.. saya mengucapkan banyak terimakasih kepada MBAH KABOIRENG yang telah menolong saya dalam kesulitan,ini tidak pernah
Fungsikuadratt ialah merupakan sebuah fungsi polinom yang mempunyai sifat peubah atau variabel dengan nilai pangkat tertinggi nya adalah 2 (dua). Secara umum fungsi kuadratt mempunyai bentuk umum seperti dibawah ini: f (x)=ax 2 +bx+c, aβ 0. dengan f (x)= Y yang merupakan variabel terikat sedangkan x merupakan variabel bebas, dan a, dan b
Titikpotong dengan sumbu X ditentukan oleh nilai; Diskriminan (D = - 4.a.c). a. Jika D > 0 parabola memotong sumbu X di dua titik b. Jika D = 0 parabola menyinggung sumbu X. c. Jika D < 0 parabola tidak memotong sumbu X. Macam-macam grafik fungsi kuadrat (parabola) dapat dilihat dibawah ini : a >0,fungsi definit positif D<0,fungsi definit
VMFgQq. Blog Koma - Pada artikel ini kita akan membahas materi Persamaan Garis Singgung Parabola yang merupakan bagian dari "irisan kerucut" dan berkaitan langsung dengan "persamaan parabola". Persamaan Garis Singgung Parabola dibagi menjadi tiga berdasarkan yang diketahui pada soal yaitu pertama garis singgung parabola melalui titik $ x_1,y_1 $ dimana titik ini berada pada parabola, kedua garis singgung parabola yang diketahui gradiennya, dan ketiga garis singgung parabola yang melalui suatu titik dan titik tersebut tidak berada pada parabola. Untuk ilustrasinya perhatikan gambar berikut ini. Persamaan Garis Singgung Parabola berkaitan erat dengan materi "Kedudukan Garis terhadap Parabola" yang sudah kita pelajari sebelumnya, sehingga disini teman-teman harus mengetahui dulu maksud dari sebuah garis menyinggung sebuah kurva parabola. Untuk memudahkan dalam mempelajari materi Persamaan Garis Singgung Parabola ini, kita sebaiknya menguasai beberapa materi dasar yaitu "persamaan parabola", "kedudukan titik terhadap parabola", "Gradien dan Menyusun Persamaan Garis Lurus", dan "Hubungan Dua Garis Lurus". Persamaan Garis Singgung Parabola PGSP Pertama Jenis pertama Persamaan Garis Singgung Parabola yaitu garis singgung parabola melalui titik $ x_1,y_1 $ dimana titik tersebut ada pada parabola. Titik $ x_1,y_1 $ ini disebut sebagai titik singgungnya. Berikut bentuk persamaan garis singgung parabolanya 1. Persamaan parabola $ y^2 = 4px $ PGSP-nya $ = 2px+x_1 $ 2. Persamaan parabola $ y^2 = -4px $ PGSP-nya $ = -2px+x_1 $ 3. Persamaan parabola $ x^2 = 4py $ PGSP-nya $ = 2py+y_1 $ 4. Persamaan parabola $ x^2 = -4py $ PGSP-nya $ = -2py+y_1 $ 5. Persamaan parabola $ y-b^2 = 4px-a $ PGSP-nya $ y-by_1-b = 2px+x_1 - 2a $ 6. Persamaan parabola $ y-b^2 = -4px-a $ PGSP-nya $ y-by_1-b = -2px+x_1 - 2a $ 7. Persamaan parabola $ x-a^2 = 4py-b $ PGSP-nya $ x-ax_1-a = 2py+y_1 - 2b $ 8. Persamaan parabola $ x-a^2 = -4py-b $ PGSP-nya $ x-ax_1-a = -2py+y_1 - 2b $ Catatan -. Dalam PGSP Pertama ini, kita harus pastikan terlebih dahulu apakah titik $ x_1,y_1 $ ada pada parabola dilalui oleh parabola atau tidak. Silahkan baca artikel lengkapnya di "Kedudukan Titik Terhadap Parabola". -. Trik Mudah mengingat rumus persamaan garis singgung parabola yang diketahui titik singgung $x_1,y_1$ Tentu kita akan kesulitan jika harus menghafal 8 rumus PGSP di atas, oleh karena itu kita butuh trik khusus. Persamaan garis singgung parabola yang diketahui titik singgungnya, kita sebut CARA BAGI ADIL. CARA BAGI ADIL yaitu jika ada bentuk kuadrat maka kita ubah menjadi perkalian, dan jika ada pangkat satu maka kita ubah menjadi penjumlahan dan dibagi dua. Berikut penjabaran CARA BAGI ADIL Persamaan Garis Singgung Parabola $ x^2 \, $ menjadi $ $ $ y^2 \, $ menjadi $ $ $ x \, $ menjadi $ \frac{x+x_1}{2} $ $ y \, $ menjadi $ \frac{y+y_1}{2} $ $ x-a^2 \, $ menjadi $ x-ax_1-a $ $ y-b^2 \, $ menjadi $ y-by_1-b $ $ x - a \, $ menjadi $ \frac{x-a+x_1 - a}{2} $ $ y - b \, $ menjadi $ \frac{y - b+y_1 - b}{2} $ Untuk lebih mudah dalam memahaminya, mari kita pelajari contoh berikut ini. Contoh Soal Persamaan Garis Singgung Parabola PGSP Pertama 1. Tentukan Persamaan Garis singgung pada parabola $ x^2 = 6y $ di titik $3, \frac{3}{2}$! Penyelesaian *. Kita cek kedudukan titik $ 3, \frac{3}{2}$ pada parabola $ x^2 = 6y $ $ \begin{align} x,y = 3, \frac{3}{2} \rightarrow x^2 & = 6y \\ 3^2 & ... 6 \times \frac{3}{2} \\ 9 & ... 9 \\ 9 & = 9 \end{align} $ Karena hasilnya ruas kiri $ = $ ruas kanan ruas kiri = 9 dan ruas kanan = 9, maka titik $ 3, \frac{3}{2}$ ada pada parabola $ x^2 = 6y $ sehingga untuk menentukan PGSP-nya bisa menggunakan CARA BAGI ADIL. *. Menentukan PGSP Titik singgungnya $ x_1,y_1 = 3, \frac{3}{2} $ $ \begin{align} x^2 & = 6y \\ & = 6. \frac{y + y_1}{2} \\ & = 3 y + y_1 \\ & = 3 y + \frac{3}{2} \\ 3x & = 3 y + \frac{9}{2} \, \, \, \, \, \, \text{kali } \frac{2}{3} \\ 2x & = 2y + 3 \\ 2x - 2y & = 3 \end{align} $ Jadi, persamaan garis singgungnya adalah $ 2x - 2y = 3 $. Catatan -. Untuk contoh soal berikutnya yang terkait dengan PGSP Pertama ini, titik yang dilalui oleh parabola selalu ada pada parabola sehingga kita tidak perlu mengecek kedudukan titik tersebut lagi. Namun jika teman-teman ingin mengecek kedudukan titiknya, kami persilahkan agar lebih lengkap caranya. 2. Tentukan persamaan garis singgung parabola berikut a. Parabola $ y^2 = -\frac{1}{3}x $ di titik $ -12 , 2 $ b. Parabola $ y-1^2 = 2x + 3 $ di titik $ 5, -3 $ c. Parabola $ x- 2^2 = 3 y + 3 $ di titik $ -1, 0 $ Penyelesaian *. Kita kerjakan dengan CARA BAGI ADIL, a. Parabola $ y^2 = -\frac{1}{3}x $ di titik $ -12 , 2 $ *. Titik singgungnya $ x_1,y_1 = -12,2 $ $ \begin{align} y^2 & = -\frac{1}{3}x \\ & = -\frac{1}{3}. \frac{x+x_1}{2} \\ & = -\frac{1}{6}. x+x_1 \\ & = -\frac{1}{6}. x+-12 \\ 2y & = -\frac{1}{6} x- 12 \, \, \, \, \, \, \text{kali -6} \\ -12y & = x- 12 \\ x - 12y & = -12 \end{align} $ Jadi, persamaan garis singgung parabolanya $ x - 12y + 12 = 0 $. b. Parabola $ y-1^2 = 2x + 3 $ di titik $ 5, -3 $ *. Titik singgungnya $ x_1,y_1 = 5,-3 $ $ \begin{align} y-1^2 & = 2x + 3 \\ y-1y_1 - 1 & = 2. \frac{x + 3 + x_1+3}{2} \\ y-1y_1 - 1 & = x + x_1 + 6 \\ y-1-3 - 1 & = x + 5 + 6 \\ y-1-4 & = x + 11 \\ -4y + 4 & = x + 11 \\ - x -4y & = 7 \\ x + 4y & = - 7 \end{align} $ Jadi, persamaan garis singgung parabolanya $ x + 4y = -7 $. c. Parabola $ x- 2^2 = 3 y + 3 $ di titik $ -1, 0 $ *. Titik singgungnya $ x_1,y_1 = -1,0 $ $ \begin{align} x- 2^2 & = 3 y + 3 \\ x - 2x_1-2 & = 3. \frac{y + 3 + y_1+3}{2} \\ 2 x - 2x_1-2 & = 3. [y + 3 + y_1+3] \\ 2 x - 2x_1-2 & = 3. y+y_1 + 6 \\ 2 x - 2-1-2 & = 3. y+0 + 6 \\ 2 x - 2-3 & = 3. y + 6 \, \, \, \, \, \text{bagi 3} \\ -2 x - 2 & = y + 6 \\ -2 x + 4 & = y + 6 \\ -2 x - y & = 2 \\ 2 x + y & = -2 \end{align} $ Jadi, persamaan garis singgung parabolanya $ 2x + y = -2 $. 3. Tentukan persamaan garis singgung parabola berikut a. parabola $ x^2 + 2x - 3y - 5 = 0 $ di titik $ 2,1 $ b. parabola $ 3y^2 + 4x - 18y - 5 = 0 $ di titik $ -4,-1 $ Penyelesaian *. Kita gunakan CARA BAGI ADIL a. parabola $ x^2 + 2x - 3y - 5 = 0 $ di titik $ 2,1 $ *. Titik singgungnya $ x_1,y_1 = 2,1 $ $ \begin{align} x^2 + 2x - 3y - 5 & = 0 \\ + 2. \frac{x+x_1}{2} - 3.\frac{y+y_1}{2} - 5 & = 0 \\ + \frac{x+2}{1} - 3.\frac{y+1}{2} - 5 & = 0 \, \, \, \text{kali 2} \\ 4x + 2x+2 - 3y+1 - 10 & = 0 \\ 4x + 2x+4 - 3y - 3 - 10 & = 0 \\ 6x - 3y - 9 & = 0 \end{align} $ Jadi, persamaan garis singgung parabolanya $ 6x - 3y - 9 = 0 $. b. parabola $ 3y^2 + 4x - 18y - 5 = 0 $ di titik $ -4,-1 $ *. Titik singgungnya $ x_1,y_1 = -4,-1 $ $ \begin{align} 3y^2 + 4x - 18y - 5 & = 0 \\ + 4. \frac{x+x_1}{2} - 18. \frac{y+y_1}{2} - 5 & = 0 \\ +2x+x_1 - 9y+y_1 - 5 & = 0 \\ 3y.-1 +2x+-4 - 9y+-1 - 5 & = 0 \\ -3y + 2x - 8 - 9y + 9 - 5 & = 0 \\ 2x - 12y - 4 & = 0 \, \, \, \, \, \text{bagi 2} \\ x - 6y - 2 & = 0 \end{align} $ Jadi, persamaan garis singgung parabolanya $ x - 6y - 2 = 0 $. Persamaan Garis Singgung Parabola PGSP Kedua Jenis Kedua Persamaan Garis Singgung Parabola yaitu garis singgung parabola yang diketahui gradiennya $m$. Berikut bentuk persamaan garis singgung parabolanya 1. Persamaan parabola $ y^2 = 4px $ PGSP-nya $ y = mx + \frac{p}{m} $ 2. Persamaan parabola $ y^2 = -4px $ PGSP-nya $ y = mx - \frac{p}{m} $ 3. Persamaan parabola $ x^2 = 4py $ PGSP-nya $ y = mx - m^2p $ 4. Persamaan parabola $ x^2 = -4py $ PGSP-nya $ y = mx + m^2p $ 5. Persamaan parabola $ y-b^2 = 4px-a $ PGSP-nya $ y - b = mx-a + \frac{p}{m} $ 6. Persamaan parabola $ y-b^2 = -4px-a $ PGSP-nya $ y - b = mx-a - \frac{p}{m} $ 7. Persamaan parabola $ x-a^2 = 4py-b $ PGSP-nya $ y - b = mx - a - m^2p $ 8. Persamaan parabola $ x-a^2 = -4py-b $ PGSP-nya $ y - b = mx - a + m^2p $ Catatan -. Gradien garis $ px + qy + r = 0 $ adalah $ m = \frac{-p}{q} $. Dua garis sejajar memiliki gradien sama, dan dua garis tegak lurus maka perkalian gradien kedua garis sama dengan $ - 1 $. -. Trik mudah mengingat persamaan garis singgung diketahui gradiennya Tentu kita tidak ingin mengingat kedelapan rumus di atas, karena kita pasti akan mudah lupa saking banyaknya rumus yang harus kita pelajari, Benarkan?!!!^_^!!!. Kita cukup mengingat dua bentuk rumusnya saja tergantung dari jenis persamaan parabolanya dan variabel mana yang pangkat satu $x $ atau $y$, yaitu 1. Jika $ x $ pangkat satu, maka PGSP-nya $ y = mx + \frac{p}{m} $ 2. Jika $ y $ pangkat satu, maka PGSP-nya $ y = mx - m^2p $ dengan nilai $ p $ bisa positif atau negatif. -. Jika titik puncak parabolanya $a,b $ , maka variabel $ x $ dan $ y $ masing-masing kita kurangkan dengan $ a $ dan $ b $ sehingga bentuknya $ y - b = mx - a + \frac{p}{m} $ atau $ y - b = mx-a - m^2p $ . -. INGAT, titik $ a,b $ artinya $ a $ adalah absis $x$ dan $ b $ adalah ordinat $y$. Contoh Soal Persamaan garis singgung parabola PGSP Kedua 4. Tentukan persamaan garis singgung parabola a. Parabola $ y^2 = 4x $ dengan gradien $ 2 $ b. Parabola $ y- 1^2 = -8x + 2 $ dengan gradien $ -1 $ Penyelesaian a. Parabola $ y^2 = 4x $ dengan gradien $ 2 $ *. Menentukan nilai $ p $ dari persamaan parabolanya Bentuk $ y^2 = 4x $ sama dengan $ y^2 = 4px $ Sehingga $ 4p = 4 \rightarrow p = 1 $. *. Dari $ y^2 = 4x $ , yang pangkat satu adalah $ x $ PGSP-nya $ y = mx + \frac{p}{m} $ *. Menentukan PGSP dengan $ p = 1 $ dan $ m = 2 $ $ \begin{align} y & = mx + \frac{p}{m} \\ y & = 2x + \frac{1}{2} \end{align} $ Jadi, persamaan garis singgung parabolanya $ y = 2x + \frac{1}{2} $. b. Parabola $ y- 1^2 = -8x + 2 $ dengan gradien $ -1 $ *. Menentukan nilai $ p $ dan titik puncak Bentuk $ y- 1^2 = -8x + 2 $ sama dengan $ y- b^2 = 4px - a $ Sehingga $ 4p = -8 \rightarrow p = -2 $. $ x - a = x + 2 \rightarrow a = -2 $ $ y - b = y - 1 \rightarrow b = 1 $ *. Dari $ y- 1^2 = -8x + 2 $ , yang pangkat satu adalah $ x $ PGSP-nya $ y = mx + \frac{p}{m} $ Karena ada titik puncak $ a,b $ , maka PGSP-nya $ y- b = mx-a + \frac{p}{m} $ *. Menentukan PGSP dengan $ p = -2 $ dan $ m = -1 $ $ \begin{align} y- b & = mx-a + \frac{p}{m} \\ y- 1 & = -1.x-2 + \frac{-2}{-1} \\ y- 1 & = -1.x+ 2 + 2 \\ y- 1 & = -x - 2 + 2 \\ y & = -x + 1 \end{align} $ Jadi, persamaan garis singgung parabolanya $ y = -x + 1 $. 5. Tentukan persamaan garis singgung parabola a. Parabola $ x^2 = -12y $ dengan gradien $ 3 $ b. Parabola $ x - 2^2 = 4y + 1 $ dengan gradien $ 2 $ Penyelesaian a. Parabola $ x^2 = -12y $ dengan gradien $ 3 $ *. Menentukan nilai $ p $ dari persamaan parabolanya Bentuk $ x^2 = -12y $ sama dengan $ x^2 = 4py $ Sehingga $ 4p = -12 \rightarrow p = -3 $. *. Dari $ x^2 = -12y $ , yang pangkat satu adalah $ y $ PGSP-nya $ y = mx - m^2p $ *. Menentukan PGSP dengan $ p = -3 $ dan $ m = 3 $ $ \begin{align} y & = mx - m^2p \\ y & = 3x - 3^2 . -3 \\ y & = 3x + 27 \end{align} $ Jadi, persamaan garis singgung parabolanya $ y = 3x + 27 $. b. Parabola $ x - 2^2 = 4y + 1 $ dengan gradien $ 2 $ *. Menentukan nilai $ p $ dan titik puncak Bentuk $ x - 2^2 = 4y + 1 $ sama dengan $ x - a^2 = 4py-b $ Sehingga $ 4p = 4 \rightarrow p = 1 $. $ x - a = x- 2 \rightarrow a = 2 $ $ y - b = y + 1 \rightarrow b = -1 $ *. Dari $ x - 2^2 = 4y + 1 $ , yang pangkat satu adalah $ y $ PGSP-nya $ y = mx - m^2p $ Karena ada titik puncak $ a,b $ , maka PGSP-nya $ y- b = mx-a - m^2p $ *. Menentukan PGSP dengan $ p = 1 $ dan $ m = 2 $ $ \begin{align} y- b & = mx-a - m^2p \\ y- -1 & = 2x-2 - 2^2. 1 \\ y + 1 & = 2 x- 4 - 4 \\ y & = 2x - 9 \end{align} $ Jadi, persamaan garis singgung parabolanya $ y = 2x - 9 $. 6. Tentukan persamaan garis singgung pada parabola $ y^2 = -8x - 3 $ yang sejajar dengan garis $ 4x - 2y + 7 = 0 $ ! Penyelesaian *. Menentukan gradien garis singgungnya -. Gradien garis $ 4x - 2y + 7 = 0 \rightarrow m_1 = \frac{-4}{-2} = 2 $ -. Karena garis singgung sejajar, maka gradiennya sama yaitu $ m = 2 $. Silahkan baca artikel "Hubungan dua garis lurus". *. Menentukan nilai $ p $ dan titik puncak Bentuk $ y^2 = -8x - 3 $ sama dengan $ y- b^2 = 4px - a $ Sehingga $ 4p = -8 \rightarrow p = -2 $. $ x - a = x - 3 \rightarrow a = 3 $ $ y - b = y \rightarrow b = 0 $ *. Dari $ y^2 = -8x - 3 $ , yang pangkat satu adalah $ x $ PGSP-nya $ y = mx + \frac{p}{m} $ Karena ada titik puncak $ a,b $ , maka PGSP-nya $ y- b = mx-a + \frac{p}{m} $ *. Menentukan PGSP dengan $ p = -2 $ dan $ m = 2 $ $ \begin{align} y- b & = mx-a + \frac{p}{m} \\ y- 0 & = 2x-3 + \frac{-2}{2} \\ y & = 2x- 6 - 1 \\ y & = 2x-7 \end{align} $ Jadi, persamaan garis singgung parabolanya $ y = 2x - 7 $. 7. Tentukan persamaan garis singgung pada parabola $ x + 1^2 = -4y-3 $ yang tegak lurus dengan garis $ -x - 3y = 1 $ ! Penyelesaian *. Menentukan gradien garis singgungnya -. Gradien garis $ -x - 3y = 1 \rightarrow m_1 = \frac{-1}{-3} = - \frac{1}{3} $ -. Karena garis singgung tegak lurus, maka . $ m_1 . m_2 = -1 \rightarrow - \frac{1}{3} . m_2 = - 1 \rightarrow m_2 = 3 $. Artinya gradien garis singgungnya adalah $ m = 3 $. *. Menentukan nilai $ p $ dan titik puncak Bentuk $ x + 1^2 = -4y-3 $ sama dengan $ x - a^2 = 4py-b $ Sehingga $ 4p = -4 \rightarrow p = -1 $. $ x - a = x + 1 \rightarrow a = -1 $ $ y - b = y - 3 \rightarrow b = 3 $ *. Dari $ x + 1^2 = -4y-3 $ , yang pangkat satu adalah $ y $ PGSP-nya $ y = mx - m^2p $ Karena ada titik puncak $ a,b $ , maka PGSP-nya $ y- b = mx-a - m^2p $ *. Menentukan PGSP dengan $ p = -1 $ dan $ m = 3 $ $ \begin{align} y- b & = mx-a - m^2p \\ y- 3 & = 3x-1 - 3^2. -1 \\ y- 3 & = 3x + 3 + 9 \\ y & = 3x + 15 \end{align} $ Jadi, persamaan garis singgung parabolanya $ y = 3x + 15 $. 8. Tentukan persamaan garis singgung pada parabola $ x^2 - 2x - 8y - 7 = 0 $ yang tegak lurus dengan garis $ x - 2y - 3 = 0 $ ! Penyelesaian *. Untuk mengerjakan contoh soal 8 ini, pertama kita ubah dulu bentuk $ x^2 - 2x - 8y - 7 = 0 $ menjadi $x - a^2 = 4py-b $ dengan "cara melengkapkan kuadrat sempurna". *. Langkah berikutnya mirip dengan contoh soal nomor 7 di atas. Silahkan teman-teman coba sendiri ya, ^_^ , sebagai latihan saja. Persamaan Garis Singgung Parabola PGSP Ketiga Jenis Ketiga Persamaan Garis Singgung Parabola yaitu garis singgung parabola yang melalui titik $ x_1,y_1 $ yang terletak di luar parabola. Bentuk PGSP Ketiga ini -. Untuk bentuk PGSP Ketiga ini akan kita lanjutkan lain kali, sementara cukup sampai bentuk PGSP Kedua dulu ya. Semangat belajar, dan bersabar menantikan kelanjutan pembahasan bagian akhirnya. Penjelasan untuk PGSP Ketiga ini sudah ada dalam artikel "Persamaan Garis Singgung Titik diluar Parabola". Sengaja kami buat dalam artikel tersendiri karena penjelasannya cukup panjang. Demikian pembahasan materi Persamaan Garis Singgung Parabola dan contoh-contohnya. Silahkan juga baca materi lain yang berkaitan dengan "irisan kerucut".
ParabolaDalam bidang matematika, sebuah parabola adalah bagian kerucut yang merupakan irisan antara permukaan suatu kerucut melingkar dengan suatu bidang parabolaIni dapat dinyatakan dalam sebuah persamaanAtau secara umum, sebuah parabola adalah kurva yang mempunyai persamaansehinggadengan nilai A dan B yang riel dan tidak Persamaan ParabolaVertikalHorisontalTitik pusat 0,0PersamaanSumbu simetrisumbu ysumbu xFokusDirektrisTitik pusat h,kPersamaanSumbu simetriFokusDirektrisRumus Parabola Matematika β Rumus, Contoh Soal dan Jawaban. Ilustrasi dan sumber foto PixabayContoh Soal dan Jawaban Parabola Matematika1. Diketahui suatu persamaan parabola yaitu y2 = 8x. Tentukan titik focus dan titik puncaknya tersebut!JawabanPersamaan y2 = 8x, sehingga p = 2. Koordinat titik fokusnya yaitu 2, 0. Koordinat titik puncak yaitu 0, 0.2. Tentukan titik puncak dari parabola y2 + 2x β 6y + 11 = 0Jawaby2 + 2x β 6y + 11 = 0y2 β 6y = β2x β 11y2 β 6y + 9 = β2x β 11 + 9y β 32 = β2x β 2y β 32 = β2x + 1Berdasarkan persamaan, bentuk parabola HorizontalJadi titik pusatnya adalah β1, 33. Tentukan titik fokus dari parabola x2 + 10x β 8y + 41 = 0Jawabx2 + 10x β 8y + 41 = 0x2 + 10x = 8x β 41x2 + 10x + 25 = 8x β 41 + 25x + 52 = 8x + 16x + 52 = 8x + 4Berdasarkan persamaan, bentuk parabola VertikalSehingga a = β5 , b = β4 dan p = 2Jadi titik fokusnya adalah Fa, p + b = Fβ5, β4 + 2 = Fβ5, β23. Diketahui parabola x2 β 6x β 12y β 15 = 0. Persamaan sumbu simetrinya adalahβ¦Jawabx2 β 6x β 12y β 15 = 0x2 β 6x = 12y + 15x2 β 6x + 9 = 12y + 15 + 9x β 32 = 12y + 24x β 32 = 12y + 2 ,Berdasarkan persamaan, bentuk parabola Vertikalsehingga a = 3 , b = β2 dan p = 3Jadi Persamaan sumbu simetrinya adalah x = 34. Diketahui parabola y β 42 = 2x β 3. Persamaan garis direktrisnya adalahβ¦Jawaby β 42 = 2x β 3Berdasarkan persamaan, bentuk parabola HorizontalMaka a = 3 , b = 4 dan p = 1/2Jadi Persamaan direktrisnya adalah x = βp + ay = β1/2 + 3y = 5/25. Sebuah parabola dengan puncak di 3, β2 dan fokus di 4, β2. Tentukanlah persamaan parabola tersebutJawabBerdasarkan puncak dan fokusnya, bentuk parabola HorizontalBentuk Umum y β b2 = 4px β aPuncak di 3, β2, maka a = 3 dan b = β2Fokus Fp + a, b = Fp + 3, β2 = F4, β2makap + 3 = 4p = 1Jadi persamaan parabola y + 22 = 41x β 3y2 + 4y + 4 = 4x β 12y2 β 4x + 4y + 4 + 12 = 0y2 β 4x + 4y + 16 = 06. Tentukanlah Persamaan parabola yang berpuncak di 4, 3, mempunyai sumbu simetri x = 4 dan panjang latus rectum 8JawabBerdasarkan puncak dan sumbu simetri, bentuk parabola VertikalBentuk Umum x β a2 = 4py β bPuncak di 4, 3, maka a = 4 dan b = 3Panjang latus rectum = 8 = 4p maka p = 2Jadi persamaan parabola x β 42 = 42y β 3x2 β 8x + 16 = 8y β 24x2 β 8x β 8y + 16 + 24 = 0x2 β 8x β 8y + 40 = 07. Tentukan titik fokus, garis direktis, dan latus rectum dari parabola 3y2-24x=0Jawab Parabola Horizontal dengan Puncak O0, 0 3y2 β 24x=0 3y2 = 24x y2 = 8x y2 = 4px 4p = 8 p = 2 Titik focus adalah p,0, sehingga titik fokusnya 2,0. Garis direktris adalah garis x = -p, sehingga persamaan garis direktrisnya x = -2 Panjang Latus rectum adalah 4p, sehingga Panjang latus rectumnya adalah Sebuah parabola dengan puncak di O0,0 dan titik fokusnya di F0,5. Tentukanlah persamaan parabola tersebut!Jawab Karena F0,p maka bentuk Parabola Vertikal dengan Puncak O0, 0 Sehingga, bentuk umum persamaannya x2 = 4py Karena titik fokusnya di F0,5, maka p=5 Jadi persamaan parabola x2 = 4py, sehingga persamaan parabola x2 = Tentukan titik fokus, garis direktis, dan latus rectum dari parabola 2x2+32y=0Jawab Parabola Vertikal dengan Puncak O0, 0 2x2 + 32y = 0 2x2 = -32y x2 = -16y x2 = 4py 4p = -16 p = -4 Titik fokus adalah 0,p, sehingga titik fokusnya 0,-4. Garis direktris adalah garis y = -p, sehingga persamaan garis direktrisnya y=4 Panjang Latus rectum adalah 4p, sehingga Panjang latus rectumnya adalah Sebuah parabola dengan puncak di O0,0 dan fokus pada sumbu-X serta melalui titik 2,8. Tentukanlah persamaan parabola Parabola Horizontal dengan Puncak O0, 0 Sehingga, bentuk umum persamaannya y2 = 4px y2 = 4px 82 = 4p 2 64 = 8p p = 8 Jadi persamaan parabola y2 = 4px, sehingga persamaan parabola y2 = 32xBacaan LainnyaPersamaan Kuadrat- Rumus Kuadratis Rumus abc, Pembuktian rumus persamaan kuadrat, Diskriminan/determinan, Akar riil dan kompleks, Geometri, Rumus fungsi kuadratSudut Matematika dan Radian β Geometri β Soal JawabanDeret Geometri atau Deret Ukur Beserta Contoh Soal dan JawabanAkar Kuadrat / Pangkat β Penjelasan, Contoh Soal dan JawabanQuiz Matematika- 4β16 + 4β16 = jawaban A, B, C atau D ? βͺ- Penyederhanaan Akar KuadratPangkat Matematika β Tabel dari 1-100 β Pangkat 2, 3, Akar Pangkat 2 dan 3 β Beserta Contoh Soal dan JawabanNilai Pi 1 juta digit pertama ΟNilai Pi Yang Tepat Ο β 100 000 digit pertamaPerbandingan Rasio Matematika β Rumus, Contoh Soal dan JawabanFaktoradik Matematika β Nilai, Cara, Kode Program dan ContohnyaRumus Geometri β Contoh Soal dan Jawaban β Segi tiga, Persegi, Trapesium, Layang-layang, Jajaran Genjang, Belah ketupat, Lingkaran, Prisma, Balok, Kubus, Tabung, Limas, BolaRumus Volume Isi Matematika β rumus volume untuk kubus, balok, silinder, limas, kerucut, bola, ellipsoid, torus, tetrahedron, tarallelepiped, volume benda putarβ¦Sudut Matematika dan Radian β Geometri β Soal JawabanRumus Turunan Matematika β TABEL TURUNAN DIFERENSIAL KALKULUS β Beserta Contoh Soal dan JawabanRumus-Rumus Lingkaran β Volume β Tes Matematika LingkaranInduksi Elektromagnetik β Hukum Faraday dan Hukum Lenz β Soal dan JawabanRumus Induktansi, Induktor dan Energi Medan Magnet β Soal dan JawabanInduksi dan Fluks Magnetik Bersama Contoh Soal dan JawabanRumus Rangkaian Listrik Dan Contoh-Contoh Soal Beserta JawabannyaTabel Konstanta Fisika β Tabel konstanta universal, elektromagnetik, atom dan nuklir, fisika-kimia, nilai yang diadopsi, satuan natural, bilangan tetapRumus Fisika Alat optik Lup, Mikroskop, Teropong Bintang, Energi, Frekuensi, Gaya, Gerak, Getaran, Kalor, Massa jenis, Medan magnet, Mekanika fluida, Momen Inersia, Panjang gelombang, Pemuaian, Percepatan akselerasi, Radioaktif, Rangkaian listrik, Relativitas, Tekanan, Usaha Termodinamika, VektorBagaimana Albert Einstein mendapatkan rumus E=mcΒ² ?Cara menjaga keluarga Anda aman dari teroris β Ahli anti-teror menerbitkan panduan praktisApakah Anda Memerlukan Asuransi Jiwa? β Cara Memilih Asuransi Jiwa Untuk Pembeli Yang PintarIbu Hamil Dan Bahaya Kafein β Sayur & Buah Yang Baik Pada Masa KehamilanDaftar Jenis Kanker Pemahaman Kanker, Mengenal Dasar-Dasar, Contoh Kanker, Bentuk, Klasifikasi, Sel dan Pemahaman Penyakit Kanker Lebih JelasPenyebab Dan Cara Mengatasi Iritasi Atau Lecet Akibat Pembalut WanitaApakah Produk Pembalut Wanita Aman?Sistem Reproduksi Manusia, Hewan dan TumbuhanCara Mengenal Karakter Orang Dari 5 Pertanyaan Berikut IniKepalan Tangan Menandakan Karakter Anda & Kepalan nomer berapa yang Anda miliki?Unduh / Download Aplikasi HP Pinter PandaiRespons βOoo begitu yaβ¦β akan lebih sering terdengar jika Anda mengunduh aplikasi kita!Siapa bilang mau pintar harus bayar? Aplikasi Ilmu pengetahuan dan informasi yang membuat Anda menjadi lebih smart!HP AndroidHP iOS AppleSumber bacaan Math is Fun, Wolfram, Lumen Learning, TopprPinter Pandai βBersama-Sama Berbagi Ilmuβ Quiz Matematika IPA Geografi & Sejarah Info Unik Lainnya Business & Marketing
ο»Ώdi ketahui parabola y = x β 3Β² β 25. pernyataan dibawah Ini benar, kecuali? A. persamaan Sumbu simetri x = 3. baliknya β25,3. titik potong Sumbu x Adalah 8,0 Dan β2,0 . titik potong sumbu y adalah 0,β16 .β JawabPenjelasan dengan langkah-langkahGrafik fungsi kuadrat,Bila dalam bentuk ;y - x - xpΒ² = ypmaka kurva ;mempunyai sumbu simetri x = xpnilai balik = ypy = x - 3 Β² - sumbu simetri = 3 benar baliknyaP 3 , -25 salah semoga bisa membantu
parabola dibawah ini yang tidak menyinggung sumbu x adalah